Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — информатика
Задания
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может до­ба­вить в мень­шую кучу любое ко­ли­че­ство кам­ней от од­но­го до ко­ли­че­ства кам­ней в этой куче. Из­ме­нять ко­ли­че­ство кам­ней в боль­шей куче не раз­ре­ша­ет­ся. Если кучи со­дер­жат рав­ное ко­ли­че­ство кам­ней, до­бав­лять камни можно в любую из них. Пусть, на­при­мер, в на­ча­ле игры в пер­вой куче 3 камня, а во вто­рой  — 5 кам­ней, будем обо­зна­чать такую по­зи­цию (3, 5). Петя пер­вым ходом дол­жен до­ба­вить в первую кучу от 1 до 3 кам­ней, он может по­лу­чить по­зи­ции (4, 5), (5, 5) и (6, 5). Если Петя создаёт по­зи­цию (4, 5), то Ваня своим ходом может до­ба­вить от 1 до 4 кам­ней в первую кучу, а если Петя создаёт по­зи­цию (6, 5), то Ваня может до­ба­вить от 1 до 5 кам­ней во вто­рую кучу, так как те­перь она стала мень­шей. В по­зи­ции (5, 5) Ваня может до­ба­вить от 1 до 5 кам­ней в любую кучу.

Игра за­вер­ша­ет­ся, когда общее ко­ли­че­ство кам­ней в кучах ста­но­вит­ся более 45. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший 46 или боль­ше кам­ней в двух кучах.

Из­вест­но, что Петя смог вы­иг­рать пер­вым ходом. Какое наи­мень­шее число кам­ней могло быть сум­мар­но в двух кучах?