№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел кодификатора ФИПИ Справка
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Задания
Задание 23 № 5222

Сколько существует различных наборов значений логических переменных x1, x2, x3, x4, x5, x6, x7, x8 которые удовлетворяют всем перечисленным ниже условиям?

 

(x1≡x2)—>(x2≡x3) = 1

(x2≡x3)—>(x3≡x4) = 1

...

(x6≡x7)—>(x7≡x8) = 1

 

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, x3, x4, x5, x6, x7, x8 при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Решение.

Запишем переменные в строчку: x1x2x3x4x5x6x7x8. Импликация ложна только в том случае, когда из истины следует ложь. Условие не выполняется, если в ряду после пары одинаковых цифр присутствует другая цифра. Например, «11101...», что означает невыполнение второго условия.

 

Рассмотрим комбинации переменных, удовлетворяющие всем условиям. Выпишем варианты, при которых все цифры чередуются, таких два: 10101010 и 01010101. Теперь для первого варианта, начиная с конца, будем увеличивать количество повторяющихся подряд цифр (настолько, насколько это возможно). Выпишем полученные комбинации: «1010 1011; 1010 1111; 1011 1111; 1111 1111; 1010 1000; 1010 0000; 1000 0000; 0000 0000» таких комбинаций девять, включая исходную. Аналогично для второго варианта: «0101 0101; 0101 0100; 0101 0000; 0100 0000; 0000 0000; 0101 0111; 0101 1111; 0111 1111; 1111 1111» — таких комбинаций также девять. Заметим, что комбинации 0000 0000 и 1111 1111 учтены дважды. Таким образом, получаем 9 + 9 − 2 = 16 решений.

 

Ответ: 16.

· ·