Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — информатика
Задания
i

Два иг­ро­ка, Петя и Ваня, иг­ра­ют в сле­ду­ю­щую игру. Перед иг­ро­ка­ми лежат две кучи кам­ней. Иг­ро­ки ходят по оче­ре­ди, пер­вый ход де­ла­ет Петя. За один ход игрок может убрать из одной из куч один ка­мень или умень­шить ко­ли­че­ство кам­ней в куче в два раза (если ко­ли­че­ство кам­ней в куче нечётно, остаётся на 1 ка­мень боль­ше, чем уби­ра­ет­ся). На­при­мер, пусть в одной куче 6, а в дру­гой  — 9 кам­ней; такую по­зи­цию мы будем обо­зна­чать (6, 9). За один ход из по­зи­ции (6, 9) можно по­лу­чить любую из четырёх по­зи­ций: (5, 9), (3, 9), (6, 8), (6, 5).

Игра за­вер­ша­ет­ся в тот мо­мент, когда сум­мар­ное ко­ли­че­ство кам­ней в кучах ста­но­вит­ся не более 20. По­бе­ди­те­лем счи­та­ет­ся игрок, сде­лав­ший по­след­ний ход, то есть пер­вым по­лу­чив­ший по­зи­цию, в ко­то­рой в кучах будет 20 или мень­ше кам­ней.

В на­чаль­ный мо­мент в пер­вой куче было 10 кам­ней, во вто­рой куче  — S кам­ней, S > 10.

Будем го­во­рить, что игрок имеет вы­иг­рыш­ную стра­те­гию, если он может вы­иг­рать при любых ходах про­тив­ни­ка. Опи­сать стра­те­гию иг­ро­ка  — зна­чит, опи­сать, какой ход он дол­жен сде­лать в любой си­ту­а­ции, ко­то­рая ему может встре­тить­ся при раз­лич­ной игре про­тив­ни­ка. В опи­са­ние вы­иг­рыш­ной стра­те­гии не сле­ду­ет вклю­чать ходы иг­ра­ю­ще­го по ней иг­ро­ка, ко­то­рые не яв­ля­ют­ся для него без­услов­но вы­иг­рыш­ны­ми, то есть не га­ран­ти­ру­ю­щие вы­иг­рыш не­за­ви­си­мо от игры про­тив­ни­ка.

Из­вест­но, что Ваня вы­иг­рал своим пер­вым ходом после не­удач­но­го пер­во­го хода Пети. Ука­жи­те мак­си­маль­ное зна­че­ние S, когда такая си­ту­а­ция воз­мож­на.